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Abstract 

This paper presents a new principled approach to 
context-aware machine translation. The proposed 
approach reformulates the posterior probability of a 
translation hypothesis given the source input by 
incorporating the source-context information as an 
additional conditioning variable. As a result, a new 
model component, which is referred to as the 
context-awareness model, is added into the original 
noisy channel framework. A specific computation-
al implementation for the new model component is 
also described along with its main properties and 
limitations.     

1 Introduction 

It is well known that source-context information 
plays a significant role in human-based language 
translation (Padilla and Bajo, 1998). A similar 
claim can be supported for the case of Machine 
Translation on the grounds of the Distributional 
Hypothesis (Firth, 1957). According to the Dis-
tributional Hypothesis, much of the meaning of a 
given word is implied by its context rather than 
by the word itself.  

In this work, we first focus our attention on the 
fact that the classical formulation of the statis-
tical machine translation framework, implicitly 
disregards the role of source-context information 
within the translation generation process. Based 
on this, we propose a principled reformulation 
that allows for introducing context-awareness 
into the statistical machine translation frame-
work. Then, a specific computational implement-
ation for the newly proposed model is derived 
and described, along with its main properties and 
limitations. 

The remainder of the paper is structured as 
follows. First, in section 2, the theoretical back-
ground and motivation for this work are present-
ed. Then, in section 3, the proposed model 
derivation is described. In section 4, a specific 
computational implementation for the model is 
provided. And, finally in section 5, main conclu-
sions and future research work are presented. 

2 Theoretical Background 

According to the original formulation of the 
translation problem within the statistical frame-
work, the decoding process is implemented by 
means of a probability maximization mechanism:  

𝑇� =  argmax𝑇 𝑝(𝑇|𝑆)        (1) 

which means that the most likely translation 𝑇� 
for a source sentence 𝑆  is provided by the 
hypothesis 𝑇  that maximizes the conditional 
probability of 𝑇 given 𝑆. 

Furthermore, by considering the noisy channel 
approach introduced in communications theory, 
the formulation in (1) can be rewritten as:  

𝑇� =  argmax𝑇 𝑝(𝑆|𝑇) 𝑝(𝑇)        (2) 

where the likelihood 𝑝(𝑆|𝑇) is referred to as the 
translation model and the prior 𝑝(𝑇) is referred 
to as the language model.  

Notice from the resulting formulation in (2) 
that, as the maximization runs over the trans-
lation hypothesis space {𝑇}, the evidence 𝑝(𝑆) is 
not accounted for.  

This particular consequence of the mathema-
tical representation in (2) is counterintuitive to 
the notion of source-context information being 
useful for selecting appropriate translations.  

This problem becomes more relevant when the 
probability models in (2) are decomposed into 
sub-sentence level probabilities for operational 
purposes. Indeed, the computational implement-
ation of (2) requires the decomposition of senten-
ce-level probabilities 𝑝(𝑆|𝑇) and 𝑝(𝑇) into sub-
sentence level probabilities 𝑝(𝑠|𝑡)  and 𝑝(𝑡) , 
were 𝑠 and 𝑡 refer to sub-sentence units, such as 
words or groups of words. 

In the original problem formulation (Brown et 
al., 1993), the sentence-level translation model 
𝑝(𝑆|𝑇) in (2) is approximated by means of word-
level probabilities, and the sentence-level langua-
ge model 𝑝(𝑇)  is approximated by means of 
word n-gram probabilities.  
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Within this framework, translation probabilities 
at the sentence-level are estimated from word-
level probabilities as follows1

𝑝(𝑆|𝑇) =  ∏ ∑ 𝑝(𝑠𝑘|𝑡𝑛)𝑛𝑘         (3) 

:  

where 𝑠𝑘  and 𝑡𝑛  refer to individual words 
occurring in 𝑆  and 𝑇 , respectively. The proba-
bilities 𝑝(𝑠𝑘|𝑡𝑛) are referred to as lexical models 
and they represent the probability of an indi-
vidual source word 𝑠𝑘 to be the translation of a 
given target word 𝑡𝑛 . These lexical models are 
estimated by using word alignment probabilities.  

In statistical phrase-based translation (Koehn et 
al., 2003), the translation model is approximated 
by means of phrase-level probabilities (a phrase 
is a bilingual pair of sub-sentence units that is 
consistent with the word alignments). 

Within this framework, translation probabilities 
at the sentence-level are computed from phrase-
level probabilities as follows:  

𝑝(𝑆|𝑇) =  ∏ 𝑝(𝑠𝑖|𝑡𝑖)𝑖         (4) 

where 𝑠𝑖  and 𝑡𝑖  refer to phrases (i.e. groups of 
words) occurring in 𝑆  and 𝑇 , respectively. The 
probabilities 𝑝(𝑠𝑖|𝑡𝑖) are estimated by means of 
relative frequencies and, accordingly, they are 
referred to as relative frequency models. 

Finally, in (Och and Ney, 2002), the maximum 
entropy framework was introduced into machine 
translation and the two-model formulation in the 
noisy channel approach (2) was extended to the 
log-linear combination of as many relevant 
models as can be reasonably derived from the 
training data. In addition, the maximum entropy 
framework also allows for tuning the weights in 
the log-linear combinations of models by means 
of discriminative training. 

Within this framework, translation probabilities 
at the sentence-level are estimated from phrase-
level probabilities as follows:  

𝑝(𝑇|𝑆) = 1
ζ

exp{∑ ∑ 𝜆𝑚 ℎ𝑚(𝑡𝑖, 𝑠𝑖)𝑚𝑖 }        (5) 

where ℎ𝑚(𝑠𝑖, 𝑡𝑖) are referred to as feature models 
or functions, 𝜆𝑚  are the feature weights of the 
log-linear combination, and ζ is a normalization 
factor. Notice from (5) that in the maximum 
entropy framework the posterior probability 
𝑝(𝑇|𝑆) is modeled rather than the likelihood. 
                                                           

1 For the sake of clarity additional model components 
such as fertility, reordering and distortion are omitted 
in both (3) and (4). 

From (3) and (4), it is clear that source-context 
information is not taken into account during 
translation hypothesis generation. In such cases, 
the individual sub-sentence unit probabilities 
depend only on the restricted context provided 
by the same sub-sentence unit level as observed 
from the training data.  

In the case of (5), on the other hand, some 
room is left for incorporating source-context 
information in the hypothesis generation process 
by means of context-aware feature models. This 
is basically done by using features that relate the 
occurrences of sub-sentence units with relevant 
source-context information of lager extension.  

Several research works have already addressed 
the problem of incorporating source context 
information into the translation process within 
the maximum entropy framework (Carpuat and 
Wu, 2007; Carpuat and Wu 2008; Haque et al. 
2009; España-Bonet et al. 2009; Costa-jussà and 
Banchs 2010; Haque et al. 2010; Banchs and 
Costa-jussà 2011). 

In the following section, we will reformulate 
the translation problem, as originally described 
in (1), in order to provide a principled approach 
to context-aware machine translation for both the 
noisy channel and the phrase-based approaches. 
As seen later, this will result in the incorporation 
of a new model component, which can be also 
used as a feature function within the context of 
the maximum entropy framework.  

3 Model Derivation  

In our proposed formulation for context-aware 
machine translation, we assume that the most 
likely translation 𝑇�  for a source sentence 𝑆 does 
not depends on 𝑆 only, but also on the context 𝐶 
in which 𝑆 occurs. While this information might 
be not too relevant when estimating probabilities 
at the sentence level, it certainly becomes a very 
useful evidence support at the sub-sentence level.  

Based on this simple idea, we can reformulate 
the mathematical representation of the translation 
problem presented in (1) as follows:  

𝑇� =  argmax𝑇 𝑝(𝑇|𝑆,𝐶)        (6) 

where 𝑝(𝑇|𝑆,𝐶) is the conditional probability of 
a translation hypothesis 𝑇  given the source 
sentence 𝑆 and the context 𝐶  in which 𝑆 occurs. 
This means that the most likely translation 𝑇� for 
a source sentence 𝑆 is provided by the hypothesis 
𝑇 that maximizes the conditional probability of 𝑇 
given 𝑆 and 𝐶. 
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For now, let us just consider the context to be 
any unit of source language information with 
larger span than the one of the units used to 
represent 𝑆 . For instance, if 𝑆  is a sentence, 𝐶 
can be either a paragraph or a full document; if 𝑆 
is a sub-sentence unit, 𝐶 can be a sentence; and 
so on. 

From the theoretical point of view, the formula-
tion in (6) is supported by the assumptions of the 
Distributional Hypothesis, which states that 
meaning is mainly derived from context rather 
than from individual language units. According 
to this, the formulation in (6) allows for incor-
porating context information into the translation 
generation process, in a similar way humans take 
source-context information into account when 
producing a translation.  

After some mathematical manipulations, the 
conditional probability in (6) can be rewritten as 
follows:  

𝑝(𝑇|𝑆,𝐶) =   𝑝(𝐶|𝑆,𝑇) 𝑝(𝑆|𝑇) 𝑝(𝑇)
𝑝(𝐶|𝑆) 𝑝(𝑆)

        (7) 

where 𝑝(𝑆|𝑇) and 𝑝(𝑇) are the same translation 
and language model probabilities as in (2), and  
𝑝(𝐶|𝑆,𝑇) is the conditional probability of the 
source-context 𝐶 given the translation pair 〈𝑆,𝑇〉. 

Notice that if the translation pair is independent 
of the context, i.e. 〈𝑆,𝑇〉 ⊥ 𝐶, then (7) reduces to:  

𝑝(𝑇|𝑆,𝐶) =    𝑝(𝑆|𝑇) 𝑝(𝑇)
𝑝(𝑆)

         (8) 

and the context-aware formulation in (6) reduces 
to the noisy channel formulation presented 
earlier in (2). 

If we assume, on the other hand, that the 
translation pair is not independent of the context, 
the formulation in (6) can be rewritten in terms 
of (7) as follows:  

𝑇� =  argmax𝑇 𝑝(𝐶|𝑆,𝑇) 𝑝(𝑆|𝑇) 𝑝(𝑇)        (9) 

As seen from (2) and (9), the proposed context-
aware machine translation formulation is similar 
to the noisy channel approach formulation with 
the difference that a new probability model has 
been introduced: 𝑝(𝐶|𝑆,𝑇). This new model will 
be referred to as the context-awareness model, 
and it acts as a complementary model, which 
favors those translation hypotheses 𝑇 for which 
the current source context 𝐶  is highly probable 
given the translation pair 〈𝑆,𝑇〉. 

In the same way translation probabilities 
𝑝(𝑆|𝑇)  at the sentence-level can be estimated 

from lower-level unit probabilities, such as word 
or phrases, context-awareness probabilities at the 
sentence-level can be also estimated from lower-
level unit probabilities. For instance, 𝑝(𝐶|𝑆,𝑇) 
can be approximated by means of phrase-level 
probabilities according to the following equation:  

𝑝(𝐶|𝑆,𝑇) =  ∏ 𝑝(𝐶|𝑠𝑖, 𝑡𝑖)𝑖         (10) 

where 𝑠𝑖 and 𝑡𝑖 refer to phrase pairs occurring in 
𝑆 and 𝑇, respectively, and 𝐶 is the source-context 
for the translation under consideration. 

In the following section we develop a specific 
computational implementation for estimating the 
probabilities of the context-awareness model.   

4 Model Implementation 

Before developing a specific implementation for 
the context-awareness model in (10), we need to 
define what type of units 𝑠𝑖  and 𝑡𝑖  will be used 
and what kind of source-context information 𝐶 
will be taken into account. 

Here, we will consider the phrase-based 
machine translation scenario, where phrase pairs 
<𝑠𝑖, 𝑡𝑖> are used as the building blocks of the 
translation generation process. Accordingly, and 
in order to be relevant, the span of the context 
information to be used must be larger than the 
one implicitly accounted for by the phrases.     

Typically, phrases span vary from one to 
several words, but most of the time they remain 
within the sub-sentence level. Then, a context 
definition at the sentence-level should be appro-
priate for the purpose of estimating context-
awareness probabilities at the phrase-level. In 
this way, we can consider the context evidence 𝐶 
to be the same sentence being translated 𝑆.   

With these definitions on place, we can now 
propose a maximum likelihood approach for 
estimating context-awareness probabilities at the 
phrase-level. According to this, the probabilities 
can be computed by using relative frequencies as 
follows:  

𝑝(𝑆|𝑠𝑖, 𝑡𝑖) =  𝑐𝑜𝑢𝑛𝑡 (𝑆,𝑠𝑖,𝑡𝑖)
𝑐𝑜𝑢𝑛𝑡 (𝑠𝑖,𝑡𝑖)

        (11) 

where the numerator accounts for the number of 
times the phrase pair <𝑠𝑖, 𝑡𝑖> has been seen along 
with context 𝑆  in the training data, and the 
denominator accounts for the number of times 
the phrase pair <𝑠𝑖, 𝑡𝑖> has been seen along with 
any context in the training data. 

While the computation of the denominator in 
(11) is trivial, i.e. it just needs to count the 
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number of times <𝑠𝑖, 𝑡𝑖> occurs in the parallel 
text, the computation of the numerator requires 
certain consideration.  

Indeed, if we consider the context to be the 
source sentence being translated 𝑆, counting the 
number of times a phrase pair <𝑠𝑖, 𝑡𝑖> has been 
seen along with context 𝑆  implies that 𝑆  is 
expected to appear several times in the training 
data. In practice, this rarely occurs! According to 
this, the counts for the numerator in (11) will be 
zero most of the time (when the sentence being 
translated is not contained in the training data) 
or, eventually, one (when the sentence being 
translated is contained in the training data). 

Moreover, if the sentence being translated is 
contained in the training data, then its translation 
is already known! So, why do we need to 
generate any translation at all? 

To circumvent this apparent inconsistency of 
the model, and to compute proper estimates for 
the values of 𝑐𝑜𝑢𝑛𝑡 (𝑆, 𝑠𝑖, 𝑡𝑖) , our proposed 
model implementation uses fractional counts. 
This means that, instead of considering integer 
counts of exact occurrences of the context 𝑆 
within the training data, we will consider frac-
tional counts to account for the occurrences of 
contexts that are similar to 𝑆. In order to serve 
this purpose, a similarity metric within the range 
from zero (no similarity at all) to one (maximum 
similarity) is required. 

In this way, for each source sentence 𝑆𝑖,𝑘 in the 
training data that is associated to the phrase pair 
<𝑠𝑖, 𝑡𝑖>, its corresponding fractional count would 
be given by the similarity between 𝑆𝑖,𝑘  and the 
input sentence being translated 𝑆.  

𝑓𝑐𝑜𝑢𝑛𝑡(𝑆𝑖,𝑘) =  𝑠𝑖𝑚(𝑆, 𝑆𝑖,𝑘)        (12) 

According to this, the numerator in (11) can be 
expressed in terms of (12) as: 

𝑐𝑜𝑢𝑛𝑡 (𝑆, 𝑠𝑖, 𝑡𝑖) =  ∑ 𝑠𝑖𝑚(𝑆, 𝑆𝑖,𝑘)𝑘         (13) 

and the context-awareness probability estimates 
can be computed as:  

𝑝(𝑆|𝑠𝑖, 𝑡𝑖) =  ∑ 𝑠𝑖𝑚(𝑆,𝑆𝑖,𝑘)𝑘
∑ 𝑠𝑖𝑚(𝑆𝑖,𝑘 ,𝑆𝑖,𝑘)𝑘

        (14) 

Notice that in (14) it is assumed that the 
number of times the phrase pair <𝑠𝑖, 𝑡𝑖> occurs in 
the parallel text, i.e. 𝑐𝑜𝑢𝑛𝑡 (𝑠𝑖, 𝑡𝑖), is equal to the 
number of sentence pairs containing <𝑠𝑖, 𝑡𝑖>. In 
other words, multiple occurrences of the same 
phrase pair within a bilingual sentence pair are 
accounted for only once. 

Finally, two important differences between the 
context-awareness model presented here and 
other conventional models used in statistical 
machine translation must be highlighted.  

First, notice that the context-awareness model 
is a dynamic model, in the sense that it has to be 
estimated at run-time. In fact, as the model 
probabilities depend on the input sentence to be 
translated, such probabilities cannot be computed 
beforehand as in the case of other models. 

Second, different from the lexical models and 
relative frequencies that can be computed on 
both directions (source-to-target and target-to-
source), a symmetric version of the context-
awareness model cannot be implemented for 
decoding. This is basically because estimating 
probabilities of the form 𝑝(𝑇|𝑠𝑖, 𝑡𝑖) requires the 
knowledge of the translation output 𝑇, which is 
not known until decoding is completed. 

However, the symmetric version of the context-
awareness model can be certainly used at a post-
processing stage, such as in n-best rescoring; or, 
alternatively, an incremental implementation can 
be devised for its use during decoding. 

5 Conclusions and Future Work  

We have presented a new principled approach to 
context-aware machine translation. The proposed 
approach reformulates the posterior probability 
of a translation hypothesis given the source input 
by incorporating the source-context information 
as and additional conditioning variable. As a 
result, a new probability model component, the 
context-awareness model, has been introduced 
into the noisy channel approach formulation. 

We also presented a specific computational 
implementation of the context-awareness model, 
in which likelihoods are estimated for the context 
evidence at the phrase-level based on the use of 
fractional counts, which can be computed by 
means of a similarity metric. 

Future work in this area includes efficient run-
time implementations and comparative evalua-
tions of different similarity metrics to be used for 
computing the fractional counts. Similarly, a 
comparative evaluation between an incremental 
implementation of the symmetric version of the 
context-awareness model and its use in a post-
processing stage should be also conducted. 
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